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Abstract

Each of N customers must select one of K commuter routes daily,
Each commuter route is represented as a series of M/D/1 queuing stations

with fixed travel times between stations. In the basic model, all

customers arrive at the start of their selected route simultaneously;

results which are optimal for the basic model are shown to be nearly
optimal under a variety of more realistic arrival assumptions. 1In the
basic model, the total wait on route k on any day when n cusgczéfs use
it is shown to be am + Bknkz.

For the basic model three solutions are found and compared: (1)
the deterministic social optimum, an assignment of individual customers
to routes minimizing total wait per day, (2) the best common mixed
strategy minimizing average total wait per day when customers' individual
average waits must all be equal and (3) the equilibrium common mixed
strategy that would be used by every customer acting in self-interest.
The three solutions differ systematically. Individuals using (3) use

routes k with low a, + B, with higher frequency than in (2) or (1).
k

k

Since oy + Bk is the total wait on route k if only one customer uses it,

self-interested individuals overload those routes which would be fastest

in the absence of congestion.




Section 1 introduces the model assumptions. In Section 2 a deter-
ministic social optimum is found. Section 3 explores mixed strategies
and compares them to the deterministic social optimum. Best mixed
strategies within certain classes can be found by solving revised deter-
ministic social optimum problems by the methodology of Section 2.

Section 4 examines more general arrival assumptions.

l. Assumptions

Many authors (e.g. in [1] and references 1, 3, 8-11, of {1]) have
shown that customers acting in their self-interest in deciding whether
or not to enter a queuing facility tend to cause more congestion at the
facility than would be socially desirable. This is a result of an
individual's failure to consider the inconvenience caused to later
arrivals when he/she enters. 1In ail of the above models customers
decide whether or not to enter a queuing system based on a comparison of
their perceived service reward and cost of waiting. In our model,
customers will not have a choice of entering or not; they must enter the
system but will have a choice of server.

Choosing a daily commuter route is perhaps the most appropriate
example of our model. Assumptions are:

(1) There 1s a finite calling population of known size, N.

(2) There are K gervice facilities, (1,2,...,K).

(3) Each customer is required to choose a service facility (e.g.,

commuter route) daily.

(4) The arrival pattern of customers and the resulting congestion

is concentrated at one period of the day. Steady state behavior
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; | which applies to any time of day cannot be analyzed. However,
, the long run tendencies of customers to make certain choices
of facility from day to day can be studied.
(5) 1f n, customers choose facility k on any day, the total number
[

of customer hours spent in facility k is given by the simple

expression
n_+ B 2 1)
b R N

where “k’sk are known positive constants.

(6) Customers have knowledge of assumptions (1)-(5) but must
choose a service facility without knowledge of any other

customers' choices.

In the context of choosing a commuter route, the following simple

2
model gives rise to a total delay of the form @, n, + Bknk when n,
customers select route k. Although highly idealized, this model may

provide some justification for using an expression as simple as a +

K"k
Bknkz to approximate the total delay on a real commuter route,

We view route k as a system of single server queuing stations in
series with constant service times and unlimited queue capacity.
Regardless of the congestion level, there are also known constant travel
times between stations. Along route k servers 1,2, e esCp provide
services of constant duration akl’akz""’akc respectively. Constant

k
travel times t,, and {tki,i-z,...,ck} are required to travel from the

start of route k to server 1 and from server i-l to server i (1'2"“’°k)‘

Figure 1 illustrates these assumptions. In addition, if n, customers
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select route k, it is assumed that all o, customers arrive at the start

of the route at the same instant.

Figure 1: Approximate Model of a Commuter Route

travel times: t

t
Kkl k2 K, -1 ko,
start 1l 2 eee ck-l cy finish
service times: akl akz ak,ck-l ‘k,ck ;
Figure 2: Equivalent Model
travel time: Tk-;k

start i finish

service time:

I'P'

Generalizations of this last, rather restrictive assumption are discussed
in Section 4. Our solutions will remain nearly optimal provided that
arrivals occur at a reasonably fast rate. Precise conditions are given
in Section 4.

The model of route k in Figure 1 can be further simplified. Let

;k = maximum {aki}; ;k is the service duration of the slowest (or bottle-

1<i<e, Sk

neck) server on route k. Let Tksiil (tk,1+ak,1); Tk is the total time
to pass through route k for a customer who encounters no queuing

delays at any server. If n_ customers enter route k at time 0, they
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leave route k a, time units apart at times Tk' Tk+°k' Tk+2ak.....
Tk+(nk-1);k. This departure pattern results from the fact that if n,
customers arrive at the i-th server at times t, t+a, t+2a,...,
t+(nk-1)a. then they arrive at the i+lst server at times

t+ak’1 + tk’“_1.t+ak'1+tk.i+1mﬂa,ak.1}, t+ak.i+tk’1+1+2 max {a,ak’i}.

cee, tha +(nk—1) max {a,ak 1}.

K, 1 %%, 141

The same sequence of departure times T, , Tk+5k.Tk+2;k.....

T, + (nk-l);k would result from the equivalent model shown in Figure 2.

k
The total delay is nka+0.5(nk-1)nk;k, an expression of the form (1).

In Figure 2, the average total delay is unchanged if we assume that
the server provides independent gservices of random duration with expected
value ;k' We henceforth assume that route k can be represented by a
single server with average service duration ;k and a fixed travel time
Tk-sk leading up to the server. The expected total delay encountered by
n, customers is then nk(Tk-;k)+0'5nk(nk+1);k - nka+0.5(nk-1)nk5k, an

expression of the form (1) with
a = Tk-ak/Z, By = ak/2 (2)

Three solutions will be found and compared. In Section 2 the
deterministic social optimum problem (DSOP) is solved. This solution
assigns individual customers to routes to minimize the expected total
wait for all customers. It is discriminatory in the sense that customers
assigned to route k may have longer or shorter average waits than customers
assigned to route k'. Customers acting in their self-interest could not

be expected to follow such an assigmment. Such a social optimum could




be attained only if customers were forced by a dictator to adhere to
their assigned routes or if a set of incentives (tolls and rebates)
could be provided which would convince any customer that it would be
unwise to deviate from his assignment. Although such methods of enforcing
the DSOP solution may be unrealistic, the DSOP solution is important
because: (1) other solutions will be found by solving revised DSOP
problems by the same methodology, (2) the objective function value
provides a lower bound on the overall average wait, a benchmark for
comparison with other solutions and (3) the DSOP solution allows a
behavioral comparison with other solutions. When given free choice,
individuals cause excess congestion in certain routes, less in others in
comparison to the DSOP solution; roughly speaking, the routes which
become over-congested are those with small Tk values, i.e., the routes
which would be fastest at (off-peak travel) times when there are no
delays due to queuing. These behavioral differences will be stated more
precisely below.

The second solution (found in Section 3) is the common wmixed

strategy which minimizes expected total wait over all common mixed

K
strategies. A mixed strategy (xl,xz,...,xx), kElxk=1, xkzp, is a

probability distribution over routes. By a common mixed strategy
(xl,xz,...,xK) we assume that every customer chooses a route on each

day by drawing from this probability distribution. Since each customer
has exactly the same available information at the time he makes a
decision, it seems reasonable that all customers should adopt a common
strategy. The numbers of customers (NI’N2""’NK) using routes 1,2,...,K

on any day has a multinomial distribution with parameters N.xl,xz,...,xK

L ah
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representing N independent trials with K possible outcomes where outcome
k has probability X, on any trial. The best common mixed strategy
(BCMS) solution has one advantage over the DSOP solution: the average
wait is the same for every customer on any day. Thus this solution is
more equitable. However, it 1is typically not an equilibrium solution;
any individual acting in self-interest would be motivated to use a
different strategy if he knew that all others would stick to (xl,xz,...,xK).
In the absence of an incentive mechanism or a dictator, the

instability of the BCMS solution makes its objective function value
(overall expected wait) impossible to attain by N individuals acting in
self-interest.

The third solution (found in Section 3) is the common mixed strategy
equilibrium (CMSE). This is the common mixed strategy that would be
used by self-interested customers without any tolls, rebates or other
incentives. An equilibrium strategy has the property that no single
customer would be motivat~d to deviate from it if he knew that all other
customers would adhere to it. The average overall wait is naturally
higher with this solution than with DSOP, or BCMS solutions.

Table 1 gives four numerical examples illustrating differences
between DSOP, BCMS and CMSE solutions. In these examples with K=2,
N=10,000, the average number of customers using route 1 varies sub-
stantially. The average wait per customer varies to a lesser extent but
can be as much as 8.25 percent higher in the CMSE solution when compared
with the DSOP. Notice that the average numbers of customers using route
1 in the DSOP and BCMS solutions are almost identical and the fact that
the actual number of customers using route 1 is random in the BCMS case

adds little to the average wait per customer.

i
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In Section 2 the deterministic social optimum problem (DSOP) is

solved; in Section 3 mixed strategy solutions (BCMS and CMSE) are found
and all 3 solutions compared. Our main result is that self-interested
individuals reach an equilibrium (CMSE solution) which tends to overload
routes k with sufficiently high values of Tk when compared to the BCMS
solution. Thus self-interested customers make too much use during rush
hour of the routes which would be fastest when no one else is on the
road. Compared to the DSOP solution, self-interested customers overload

routes k with sufficiently high values of Tk+(N—l)§k/(2N+2).

2. Deterministic Social Optimum Problem (DSOP)

In the analysis below we ignore the fact that nl,nz,...,nK must
all be integers. Under social optimization 0;50y,...,0, must be set
to minimize total delay in all systems combined. The DSOP is then the

nonlinear programming problem:

K

2

minimize pX (aknk+8knk)
k=1
K

subject to I n =N 3)
k=1
3 n 20, k= 1,2,...,K i
* % *
The optimal solution (nl,nz,...,nK) is easily found by writing a

Laggrangean

K 2 K
Z(nl,nz,...,nK,A) = kEl(aknk+3knk) - ( E

n, ~-N)
k=1 K
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and evaluating partial derivatives

BZ(nlnz, con pnkQA)

= a +28. n, -A. %)
Bnk k kk
* X *
(nl,nz,...,nk) must satisfy
) X ok 0 £ o< *
ak+.8knk—A = if O nkgﬂ (5)
* *
uk—A >0 if nk=0. (6)

From (5) and (6) n:=[k*—ak]+/28k where a'=max {a,0}., TIf

K
*
nk(A)E[A-ak]+/nk, then A 1is the unique value of A where I nk(A)=N.
K k=1
But I nk(l) is a piecewise linear convex non-decreasing function of A

k=1 * T *
with kinks at Gpslasecnylye Thus A (and hence nl,nz,...,nK) can be

found by a simple search.

3. Mixed Strategy Solutions

' * *
Under the DSOP solution (nl,nz,...,nK) the total wait in facility k

* *
is aknk+8knk2; thus the average wait per customer in facility k is

*
ak+8knk. Thus a customer would be tempted to switch from facility k to

* * *

facility £ if uk+6knk>u£+81(n£+l). Since (5) implies a, * ZBknk =0,

* *
+ 282“2’ a customer would be tempted to switch from k to £ if a, + Bn

* * *
+ z(ak + 23knk) > ap + Bl(nﬂ + 1) + z(“t + ZBlnz) where z is an arbitrary




constant. Setting z = - 1 and multiplying both sides by -1 yields the
equivalent condition: Bkn: < 82 (nz ~ 1). Setting z = -0.5 and multiplying
both sides by 2 yields an alternative equivalent condition: a > o, +

28('

There are typically one or more equilibria involving different
mixed strategies for different customers. However, since every customer
has the same information, we concentrate on the case where all customers
use the same mixed strategy. First, we can find the BCMS, the common
mixed strategy which minimizes average wait for all customers. If every
customer uses this strategy, an equilibrium generally does not result,
The BCMS generally differs from the strategy (n;/N,n;/N,...,n;/N) which
one might consider based on the DSOP allocation (nI,n;,...,n;). If
each customer uses the mixed strategy (xl,xz,...,xK), then the actual
number of customers selecting routes 1,2,...,K is a multinomial random
vector (Xl’XZ""’xK) with E(Xk)Eka, Var (xk)=ka(1-xk) and
E(Xi)=ka+N(N-l)xi. We then wish to find (xi,x;,...,x;) to minimize

K 2, K 2
E{kzlakxk+6kxk} = kil{akE(Xk)+BkE(Xk)}-
Substituting yields

K 9 K
b {akka+8k[ka+N(N-1)xk]} = ﬁ

2
{(a, +8, )Nx, +N(N-1)x.B, }.
k=1 =1 k "k’ k k"k

Letting n = ka gives

K
I {(a +B8,)n, +(N~-1)n
kel k "k’ k

2
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This can be solved by finding the DSOP solution (nl,nz,...nK) when

L L}

L} L} L ] L ]

and then finding (xl.xz,...,xK) = (nllN,nZ/N,...,nK/N).

To find the common mixed strategy equilibrium (xl,xz,...,xx)
assume that customers 2 through N use this strategy. The number of
these customers selecting routes 1,2,...,K respectively on any day is
thus a multinomial random vector (Nl,Nz,...,NK) with E(Nk)E(N-l)xk. By
using route k with n, others present, customer 1 can attain a conditional
average walt of Tk-;k+(1+.5nk)5k-Tk .Snkzk. Since E(Nk)-(N-l)xk,
customer 1 can attain an average wait of Tk+.5(N-1)xk5k by selecting

route k. Using (2)
Ty SO-1)x, 3 o 48, - (8- 1), By =0 HL+(0N-1)x, 1B, ®

For an equilibrium we must have equal average waits on every route used

(1.e. with xk>0). Thus

ak+[1+(N-1)xk]Bk-l =0 if 0<xk§; 9
i - - é
i If there are unused routes (xk-O), then no positive value of x, can ‘

i
]

attain an average wait of A.

e WA b
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Thus

oy +8, =) 20 if x,=0 (10)

Conditions (8)~(9) are analogous to conditions (5)~(6). In fact, this

equilibrium can be found by solving a DSOP with
ak=uk+8k, Bk = (N-l)Bk/ZN (11)

Denoting the solution to this DSOP by (nl,nz,...,nK) we then have
(xl,xz,...,xK) = (nI/N,nZIN,...,nK/N).

The mixed strategy solutions BCMS and CMSE can be found by solving
revised DSOP's with parameters given by (7) and (11) respectively. To
compare DSOP solutions to different problems, recall that the original

*
DSOP solution (nI,nz,...,n;) satisfies (5) and (6) and thus
* * +
n, = [ -uk] /28k (12)

*
where A 1is the unique value such that

E K
*
L (\"-o 1%/28, = N (13)
k=1
]
From (12) and (13) it is easy to verify that a revised DSOP with a =ca, ,

] *
Bk-ch,c>0 has the same solution (n;,n;,...,nk) found from (12) and (13)




13

* *
by replacing s Bk and A by oy s ch and cl respectively. We thus

state Lemma 1 without proof.

Lemma 1: Two N customer DSOP's with parameters {(a k=1,2,...,K} and

klskl
{cak,ch,k-l,Z,...,K} respectively have the same optimal solution

provided c>0.

This device of rescaling a DSOP's parameters allows alternative

representations of (7) and (11). For (7) with c=N/(N-1) we get

Qk = N(ak"'sk)/(n‘l)’ Bk - Bk (7')

For (11) with c=2N/(N~1) we get

~ -~

o = 2N(uk+8k)/ (N-1), B, =

C B 1"

Using (7') and (11°'), BCMS and CMSE solutions can be found by solving a

'

1]
DSOP with revised a.s but original Bks. Theorem 2 compares solutions of

2 DSOP's which differ in this manner.

L s ]
Theorem 2: Let (“1’“2""’nx) solve the revised DSOP with parameters

L] 1] L
+
@)s0pseessy and 81,82,....8K. Then if n - {A -ak] /28k

* [] [ ] * Al ’
< ak-qk<k -\ and ak<A . (14)

t
n>n
k

e St ot R R M. Wi e skl
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Proof: From (12) and n = (A -uk]+/28k

Thus

n-ny = ([) -a, 1" - [V *-a,1*1/28,

'k ! + * +
n N, <= (A -ak] - [A -ak] >0

L} * 1]
<m> ) -ak>x -ay, and A -ak>0

LI v
uk-ak<x -2 and uk<A .

<=>

Comparing the original DSOP solution to the BCMS solution found

using (7'), (14) becomes

n;>n: <m> [N(ak+ek)/(n-1)] - ak<A'-A* and N(ak+8k)/(N-1)<A'

) * ]
<=> ak+NBk<(X =2 )(N-1) and ak+8k<(N-1)A /N.

Thus the BCMS solution has a higher average number of customers on route
k than the DSOP solution when ukﬂlek is sufficiently small. From (2),

ak+NBk=Tk+(N-1)ak/2.

Comparing the DSOP solution to the CMSE solution found using (11'),

(14) becomes

C . A
non, <> 2N(uk+sk)l(u-1)-ak<x-x* and 2N(a, #8,)/ (N-1)<A

<=> (u+1)ak+2uak<(u-1)(i-x*) and ak+ak<(u-1)i/zn.




)
]
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Thus the CMSE solution has a higher average number of customers on route

k than the DSOP solution when (N+1)ak+2.‘l8k or equivalently ak+2N8k/(N+1)
is sufficiently small. From (2):
uk+2N8k/(N+1) = Tk+(N-1)nk/2(N+1). (15)

Comparing the BCMS solution to the CMSE solution in the same manner

ylelds
~ [ - 1 ] -
xk>xk <=> nk>“k <=> ak+8k < constant and nk>0.

From (2), °k+Bk-Tk’ exactly the expected travel time for route k in the
absence of congestion. Customers acting in their own interest have a
tendency to overload routes which are fastest in the absence of conges-
tion when compared to the BCMS solution. Since in most practical examples
Tk>>§k routes with sufficiently small Tk are likely to also have suffi-
ciently small rk+(u-1)3k/2(u+1). Thus from (15) the same routes will
often be overloaded by individuals in comparison to the original DSOP
solution; this fact is also suggested by the limited computational

evidence in Table 1 where there is little difference between DSOP and

BCMS solutions.

4, Modifying the Arrival Assumption

Although commuters typically wish to gain access to a route system

at epochs which lie in a relatively short time interval, our assumption
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that all customers arrive at the same instant is at be.. an approximation.
First, we state sufficient conditions on modified arrival assumptions to
guarantee that the DSOP solution under instantaneous arrival remains
nearly optimal. Later, additional sufficient conditions will be stated
for the mixed strategy problems. Throughout this section we view each
of the K facilities as a single server model as in Figure 2; service
times may be stochastic.

Let (n;,n;,...,n;) solve the original instantaneous arrival DSOP

K

yielding optimal total wait W= I {('1'k kn:
k=1

that all customers arrive at time 0, let Dl’DZ""’DK be the (possibly

-O.S;k)n:+0.5; 2}. Assuming

random) times at which the last customer departs servers 1,2,...,K

*
respectively. (If nk'o. then DkEO.) Now consider a modified arrival
*

* %
process in which the first arrival occurs at time 0. Using (nl,nz,...,nK)
and any particular sequential assignment of customers to servers, let

L L} '
Dl'DZ""’DK be the times at which the last customer departs servers
1,2,...,K respectively. Then we can state and prove Theorem 3.
_ K , ' * k *
Theorem 3: If ¢ = kElnkE{Dk—Dk}, then (nl,nz,...,nK) yields an expected
total wait which 18 ¢ - optimal for the DSOP with modified arrival

process.

Proof: Let BI’EZ"“'EN be the epochs at which customers 1,2,...,N are

* & *
served using (nl,nz,...,nk) in the original problem. Then
“ ] L L
W=©E(: Ei}' Let EI'EZ""’EN be the corresponding service completion
i=1

. iy

|
|
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epochs and Al’ 2""’AN the corresponding arrival epochs under the

L
modified arrival process assumption. Then W = expected total wait =

N , N
E{ Z Eil-E{ L Ai}’ 1f customer i is assigned to route k, then
i=] i=]1
' ' N, N |
E{E, }-E{E }<E{D }-E{D, }. Thus O<E{ L E }-E{ I E l<e and hence :
i=]1 i=]1 ;
|
' N L
W <wre-E{ I A} f
i=]1 :

Any other allocation (nl,nz,....nk) with expected total wait W in

1 A N
the original problem must have expected total wait W >W-E{ I Ail in the
i=] |

-t t
modified problem. Thus W >W -¢,

Theorem 3 admits any arrival process which does not significantly

inconvenience any server. For example, provided that we can guarantee
that each server will work without an idle period between services of
any two customers, ¢ becomes ? n:E{Kk} where Kk is the time that the
k=1 _ *

first customer is assigned to route k. (Akzo if nk-O.) 1f, for
example, customers arrive at times (i-1)t, i=1,2,...,N and service
durations in every queue are constant and longer than Kt, then by assigning
the first K customers to queues 1,2,...,K in descending order of N, we
can attain e<N(K~1)t/2, The average wait per customer is then within
(K-1)t/2 of optimal.

An analogue of Theorem 3 holds for the mixed strategy cases.
However, we must assume that a modified arrival process gives no customer

any information that can be used to advantage. Although customers may

be aware of the overall arrival process assumptions, they must be re-

stricted to choose a mixed strategy which is independent of their eventual

B o o
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to the original instantaneous arrival model will be very close to optimal

provided conditions (1) and (2) directly above hold with very high

probability.
In the equilibrium case the average wait per customer on route k is
N ' N
E{ gk E,/N } - E{ Zk A, /N, } where N, is the random number of customers
i=1 1"k =1 1"k k
using route k and both quantities in braces are defined to be 0 when
Nk-O. Comparing the average waits per customer on routes k and m where
1 x, 2 0 and x> 0 (so that routes k and m are used) we first notice that
N N
E{ zk AN} = E{ £ A,/N_}. Thus the difference between the average
{=1 1"k (=1 i'" m
wait per customer on route k and that on route m is
N [] N 1 ]
k m
B{ £ BilNk} ~-E{: Ei/Nm}
i=1 i=1
Nk ' Nm
< E{ I Eilﬂk} - E{ L Ei/Nm}
i=1 i=1
Nk ! “m
< E{ I E/N.} + E(D-D} - E{ I E /N }
i=1 i=1
, 1
= E{Dk°Dk} (16)
By reversing the roles of k and m we can also show that ?
N o N '
B I E/N) - E{ I E /N } > - E(D -D ) (17) ;
i=1 ' i=1
As long as E{Dk-Dk} and E{Dm-Dm} are small there is little difference in
the average wait per customer between routes,
As an example of the magnitude of ¢ consider the case with K=2,

N-103.T1-T2-15. exponential service with ;1-:2-.06. By symmetry, the
DSOP solution i{s (500,500) and both mixed strategy solutions are (.5,.5).

In the absence of traffic the average commuter time is 15, in the DSOP

solution it is 29.97. If interarrival times are exponential with expected
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value 1.5x10-2 and all customers use the mixed strategy (.5,.5), then up
to time 30x10_2 the number of arrivals in each system is Poisson (10).
Since the arrival rate in each system is 33.3 and the service rate 16.7,
each server is almost certain to be busy from time 15-.06/2+30x10_2
until his system is emptied., Thus e=103x30x10-2=300 is conservative and

the average wait per customer is guaranteed by Theorem 3 to be within

0.3 of the optimal average wait, i.e. an error of less than one percent.
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The three solutions differ systematically. Individuals using (3) use

routes k with low Oy + Bk with higher frequency than in (2) or (1).

Since a

K + Bk is the total wait on route k if only one customer uses it,

self-interested individuals overload those routes which would be fastest

in the absence of congestion.
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